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Abstract

We determine, up to isomorphism and duality, the number of abstract regular polytopes
of rank three whose automorphism group is a Suzuki simple group Sz(q), with ¢ an odd
power of 2. No polytope of higher rank exists and, therefore, the formula obtained counts all
abstract regular polytopes of Sz(q). Moreover, there are no degenerate polyhedra. We also
obtain, up to isomorphism, the number of pairs of involutions.

1 Introduction

In [6], Leemans and Vauthier built an atlas of abstract regular polytopes for small groups.
The groups Sz(8) and Aut(Sz(8)) are among the groups analysed. It turns out that, up to
isomorphism and duality, Sz(8) has seven polytopes, all of rank three, and that Aut(Sz(8)) has
no polytope.

In [3], Leemans proved that, if G := Sz(q) with ¢ # 2 an odd power of 2, all the abstract
regular polytopes having G as automorphism group are of rank three (and there exists at least
one such polytope for each value of ¢). Moreover, if Sz(q) < G < Aut(Sz(q)), he showed that G
is not a C-group and, therefore, that there cannot exist an abstract regular polytope having G
as automorphism group.

In this article, we count, up to isomorphism and duality, the number of polyhedra on which a
group Sz(q), with g = 22¢*1 and e > 0 an integer, acts as a regular flag-transitive automorphism
group. To make the proof easier to understand, we split our analysis in two parts. First we look
at Sz(q) with ¢ an odd prime power of 2. Then we look at Sz(q) with ¢ an odd power of 2. We
first count how many pairs of commuting involutions there are up to isomorphism in a Suzuki
simple group. We obtain the following result which is of interest not only for the purpose of this
paper, but for group theory in general.



Theorem 1. Let G := Sz(q) with ¢ = 22¢*! and e > 0 an integer. Up to isomorphism, there

are 1
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pairs of commuting involutions in G, where
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and p is the Mébius function.
The following result is the main result of this article.

Theorem 2. Up to isomorphism and duality, a given Suzuki group Sz(q), with ¢ = 22¢*1 and
e > 0 an integer, acts flag-transitively on
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All these polyhedra are non-degenerate, i.e. have a Schlifli symbol with entries > 3.

Observe that Sah [9] and Conder et al. [1] have computed, up to isomorphism, the number
of regular hypermaps on which a group of type PSL(2,q) or PGL(2, q) acts as a regular auto-
morphism group. We recall that, as seen in [4], the PSL(2, ¢) groups act on polytopes of rank at
most 4 and that there are only two polytopes of rank 4 having a PSL(2, ¢) as flag-transitive reg-
ular automorphism group. They are Griinbaum’s 11-cells (for ¢ = 11) and Coxeter’s 57 cells (for
g = 19). For the PGL(2, q) groups, the situation is quite similar. In [5], it is shown that these
groups act on polytopes of rank at most 4 and that there is a unique polytope of rank 4 having a
PGL(2, q) flag-transitive automorphism group. It is the 4-simplex and the corresponding group
is PGL(2,5) = Sym(5).
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2 The Suzuki simple groups and their elements

We refer to the definition of the Suzuki groups as given in [7]. The lemmas of this section are
all proven in [7] too.

Let K be a field of characteristic 2 with | L |> 2. Let ¢ be an automorphism of K such
that 2°° = 22 for each z in K. Let B be the 3-dimensional projective space over K and let
(zo, 21, %2,23) be the coordinates of a point of B. Let E be the plane defined by the equation
xo = 0 and let U = (0,1,0,0)K. We introduce coordinates in the affine space Bg by = = %,
Yy = %3 and z = i—é. Finally, let D be the set of points of B consisting of U and all those points
of Br whose coordinates (z,y, z) satisfy the equation

z=xy+ a7 4y,

where 2772 = 2922, We denote by Sz(K, o) the group of all projective collineations of B which
leave D invariant.

Lemma 1. Let e > 0 be an integer. If K is isomorphic to GF(22¢t1), then K admits ezactly
one automorphism o with 27" = 22 for all x in K. If K is isomorphic to GF(22%¢), then K does
not possess an automorphism o with 27" = 22 for all x in K.

This lemma implies that, if K is isomorphic to GF(q) with ¢ = 22¢*! we may write Sz(q)
instead of Sz(K,0). The groups Sz(q) are the Suzuki groups named after Michio Suzuki who
found them in 1960. The generalizations Sz(K, o), where K is a field of characteristic 2, not
necessarily finite, are due to Rimhak Ree and Jacques Tits (see for instance [11]). The set D is
an ovoid as defined below.

Definition 1. An ovoid is a non-empty point-set of a projective 3-space that satisfies the fol-
lowing three conditions.

1. No three points are collinear;
2. If p € D, there ezists a plane E of B with DN E = {p};

3. If p € D and if E is a plane of B with DN E = {p}, then all lines | through p which are
not contained in E carry a point of D distinct from p.

For a,b € K, we denote by 7(a,b) the mapping defined by
(z,y, z)T(“’b) = (z4a,y+b+az,z+ab+a2+b7 +ay+a”x + ba),

where o is the involutory automorphism of K defined above. It follows that 7(a,b)7(c,d) =
T(a+ ¢,ac” + b+ d). For k € K*, we define the collineation n(k) by

(z,y, 2)"®) = (kz, k7Hly, k7F22).

A straightforward computation shows that 7(a, b)n(k) = n(k)7(ka, k°*1b). Let w be the collineation
of B defined by (xg,x1,x2,x3)* = (21, %0, 23, x2) and write Sz(K, o)y for the stabilizer of U in
Sz(IC, o).



Structure Order Index Description

(B Ey) : Cq1 - (g—1) ¢ +1 Normalizer of a 2-Sylow,
stabilizer of a point of
the ovoid.

Dy(g—1) 2-(¢g—1) M Stabilizer of a pair of
points of the ovoid.

Ca, : Cy aq -4 qi(lqiﬁ;l) Normalizer of a C,,.

Cg, : Cy By -4 ffqu;U Normalizer of a Cg, .

Sz(22+1) (s2+1)-s%-(s—1)

with 2f + 1 |pr 2e+ 1

Table 1: The maximal subgroups of Sz(q)

Lemma 2. Let K be a commutative field of characteristic 2 with | K |> 2 and assume that
K admits an automorphism o such that 27" = 2?2 for oll x € K. If D s the point set defined
above in the projective space of dimension 3 over KC, then Sz(KC, o) acts doubly transitively on D.
Moreover, if v € Sz(K, o)y, then there exists exactly one triple (k,a,b) € K* x K x K with v =
n(k)r(a,b), and if v € Sz(K,0)\Sz(K, o)y, then there exists exactly one 5-tuple (k,a,b,c,d) €
K* X K x K x K x K with v =n(k)T(a,b)wr(c,d).

Let PG(3, q) be the projective space over the field GF(g) and let D be an ovoid of PG(3, q).
If IT is a plane of PG(3, ¢) such that | IIND |> 1, we call IIND a circle. The following lemma
ensures that every circle has the same number of points and, moreover, that these circles are
ovals.

Lemma 3. If D is an ovoid in PG(3,q), then | D |= ¢*> + 1. If E is a plane of PG(3,q), then
E is either a tangent plane of D or END consists of the ¢ + 1 points of an oval of E.

3 The maximal subgroups of Sz(q)

There are four numbers that play an important role in the subgroup structure of Sz(q). They
are respectively ¢, ¢ — 1, ¢ +r+1 and ¢ — r + 1 where r = \/2q. We write ¢ +r+ 1 =: a4 and
q—r+1=:p, In [2], the following lemma is proven.

Lemma 4. The numbers q — 1, aq and 3, are pairwise coprime.

Table 1 gives the maximal subgroups of a Suzuki group. These have been computed by
Suzuki in [10]. We write m |y » when m is a proper maximal divisor of n. The groups E,
are elementary abelian groups of order n. The groups C,, are cyclic groups of order n. The
groups Ds, are dihedral groups of order 2n. The symbols » and : stand for non-split and split
extensions.



4  Abstract regular polytopes and string C-groups

Thin regular residually connected geometries with a linear diagram, abstract polytopes and
string C-groups are the same mathematical objects. The link between these objects may be
found for instance in [8]. We take here the viewpoint of string C-groups because it is the easiest
and the most efficient one to define abstract regular polytopes.

As defined for instance in [8], a C-group is a group G generated by pairwise distinct involu-
tions po, ..., pn—1, which satisfy the following property, called the intersection property.

VLK C{0,....n—1},{pj|lje)N{pr | ke K)=(p; | j€ JNK)

A C-group (G,{po,...,pn—1}) is a string C-group if its generators satisfy the following rela-
tions.
(pipp)> =1aV 45,k €{0,...n — 1} with | j—k|>2

5 Suzuki groups and polytopes

In [3], the following result is proven.

Theorem 3. Let Sz(q) < G < Aut(Sz(q)) with ¢ = 22°t! and e > 0 an integer. Then G is
a C-group if and only if G = Sz(q). Moreover, if (G,{po,...,pn-1}) is a string C-group, then
n=3.

We may translate this theorem in abstract regular polytope theory. If Sz(q) < G <
Aut(Sz(q)), then G is not the automorphism group of an abstract regular polytope. If G = Sz(q),
there exists an abstract regular polytope P such that G = Aut(P). Moreover, if P is an abstract
regular polytope such that G = Aut(P), then P must be an abstract polyhedron, i.e. a rank
three polytope.

Let G := Sz(q) with ¢ = 22¢*! and e > 0 an integer. We consider that a polytope and its
dual are the same object. In order to determine, up to isomorphism and duality, the number of
abstract regular polytopes whose automorphism group is G, we must count, up to isomorphism,
the number of unordered triples of involutions {pg, p1,p2} in G, such that (pgp2)? = 1g and
{po, p1, p2) = G. To do this, we first count the number of ordered triples of involutions [po, p1, p2].
This is done in 3 steps. In step 1, we count the number of non-isomorphic choices for pg. In step
2, we fix pp and look at the number of non-isomorphic choices for an ordered pair of involutions
[P0, p2], where ps has to commute with pg. In step 3, we suppose py and ps fixed and we count
the number of possibilities left to choose p; in order to obtain an ordered triple of involutions
[P0, p1, p2] satisfying the given properties. Finally, we divide the result by two, as no polyhedron
of Sz(q) is self-dual. The intersection property is automatically satisfied thanks to Lemma 4.

STEP 1

The following lemma is given without proof since it is well known and easy to prove.

Lemma 5. In Sz(q), there are (¢* + 1)(q — 1) involutions that are all pairwise conjugate.

Therefore, up to conjugacy (and hence up to isomorphism), there is a unique choice for pg

in G.



STEP 2

Suppose that py is fixed. Since po commutes with pg, we have ps € Cq(po) = EpEq < EgEy :
Cy—1. Obviously, in Cg(po), there are ¢ — 1 involutions, namely pg and g — 2 others. All of the
g — 1 involutions are in a subgroup of G isomorphic to AGL(1, ¢). These involutions correspond
to translations of AGL(1,¢). Under conjugation in G, the stabilizer of py fixes all the involutions
of the centralizer, as the AGL(1, ¢) subgroup does. So, up to conjugacy, there are ¢ — 2 ordered
pairs of commuting involutions in Sz(g). We now look at the action of Aut(G) = G : Caeq1 on
these involutions. It amounts to looking at the action of Aut(AGL(1,q)) = AGL(1,q) : Coet1.

Elements of AGL(1,¢) may be written as follows.

a(a,b) : GF(q) = GF(q) : ¢ — axz + b with a # 0,a,b € GF(q).

The involutions are the «(1,b) with b # 0, i.e. the translations of the affine line AGL(1,q).
Without loss of generality we may suppose pg = «(1,1) and pa = «(1,b), with b # 1. There are
q — 2 possible values for b.
In Aut(AGL(1,q)), the set of field automorphisms is added. These automorphisms are as
follows.
on : GF(q¢) = GF(q) : * — 2™ where n = 2™ with m =0,--- , 2e.

Recall that the involutions in AGL(1, q) are the mappings «, : AGL(1,q) — AGL(1,q) :  —
x + a with a € GF(¢)*. We look at the action of Aut(AGL(1,q)) on the set of involutions
Q= {a, | a € GF(¢)*}). We want to know how many orbits of ordered pairs of involutions
[tg, ap)] (g, ap € ), there are under the action of Aut(AGL(1,q)).

Since Aut(AGL(1, q)) is transitive on 2, there is a unique choice for ;. Assume a = 1. Take
H = Aut(AGL(1,9))a, = {on|n=2",m=0,---,2e}. Then |H| = 2e + 1. Let us study the
action of H on Q\{a;}. We distinguish between the case where 2e + 1 is a prime and the case
where 2e + 1 is not a prime.

5.1 ¢ =2°*"! with 2¢ + 1 a prime

Here, |[H| = |Hq,| - |H ()| Yoy, € Q2. Since 2e + 1 is a prime, the orbits have length 1 or 2e + 1.
There is one orbit of length 1, namely {a;}. The remaining ¢ — 2 involutions of € are split in

Qqefl orbits of length 2e 4+ 1. The following lemma ensures that qu;—fl is a natural number.

Lemma 6 (Fermat, 1640). If p is a prime number then p divides 2P — 2.

The discussion above implies that, up to isomorphism, there are éle;fl ordered pairs of com-

muting involutions in G, and unordered pairs. This settles Theorem 1 when 2¢ + 1 is a
prime.

STEP 3

Now we count the number of possibilities for choosing p;. As seen before, there are ¢ — 1
involutions of G in Cg(pp). So there are ¢?(¢— 1) involutions in G that are non-commuting with
po- Step 2 gives I := Aut(G)(py,p0] = Calpo) = Ca(p2). Clearly, each involution in Cg(po) is
fixed by I. By definiton, none of the ¢(¢ — 1) involutions not in Cg(pg) are fixed by I. Hence,
for every possible p1, |I,,| = 1. As Cg(po) = EpEq, |I| = |Calpo)| = ¢ So [I(p1)| = ¢*
for every possible p;. Therefore, the length of the orbit of p; under the action of Cg(po) is

q—2
2(2e+1)



q® and Cg(po) splits the ¢?(q — 1) involutions in ¢ — 1 orbits of length ¢ each. The action of
Inn(AGL(1,q)) on the involutions that are non-commuting with pg gives ¢ — 1 non-conjugate
choices for p;. The outer automorphisms do not fix pg and py at the same time. Since we want
both involutions to be fixed, we cannot apply an outer automorphism in this case. So we have
q — 1 non-isomorphic choices for p;.

Finally, in Sz(q), up to isomorphism, there are

2‘16121 (¢ — 1) ordered triples of involutions
[po, p1, p2] such that (pop2)? = Lss(q) and (po, p1,p2) = Sz(q). Since pg and ps commute and
have the same property, we can exchange them. The polytopes yielded by [po, p1, p2] and by
[p2, p1, po] are dual. None of these polytopes may be self-dual. Indeed, suppose [po, p1, p2] gives
a self-dual polyhedron. Then, there must be an involution g € Aut(G) such that g(pg) = p2,
g(p2) = po and g(p1) = p1. The last condition implies that g € Ci(p1). Therefore, g cannot
swap po and ps. Hence, up to isomorphism and duality, there are 2((21%1)@ — 1) triples of
involutions {po, p1, p2} such that (pop2)? = Lss(q) and (po, p1,p2) = Sz(q). All these triples
satisfy the intersection property by Lemma 4 and the subgroup structure of Sz(q). It is obvious
that all polyhedra of Sz(q) are non-degenerate for, otherwise, Sz(q) = 2 x Dy, for some integer

n. In other words, we get the following theorem.

Theorem 4. A given Suzuki group Sz(q), with ¢ = 221 and 2e + 1 a prime, acts flag-
transitively on 2(3%_21)((] — 1) polyhedra up to isomorphism and duality. All these polyhedra
are non-degenerate.

5.2 ¢ =2%"! with 2¢ + 1 not a prime

We are in the same situation as above section 5.1. Recall that STEP 1 gives us only one choice
for po.

STEP 2 (Continued)

We want to count the number of orbits of ordered pairs of involutions [a, ap], with o €
O\{a1}, under the action of Aut(AGL(1,q)). Let H := Aut(AGL(1,q))a, = {on | n=2",m =
0,---,2e}. Since 2e + 1 is no longer a prime, the orbits yielded by the field automorphisms may
have a length other than 1 or 2e + 1. In fact they can have any length n, with n | 2e + 1. Let
A(n) be the number of orbits of length n under the action of H on QU {1s}. To determine A(n),
we use the Mdobius function.

Definition 2. The Mébius function is the function p on the positive integers given by

1 ifn=1,
pn) =< (=% ifn=pi--p, where py,--- ,p are pairwise distinct primes,
0 if n is not squarefree.

The Mobius function has the following important property, also known as Mdbius inversion.

Lemma 7. Let F' and G be functions on the positive integers. If

Gn) = Y F(d),

dn



then

F(n) =" n(5)G(d),

din

and conversely.
Using this definition and this lemma, we get the following result.

Lemma 8. With the notations as above, for every n|2e+1,

M) = =3 2,

din

Proof. By the definiton of A(n), for every n | 2e + 1, there are A\(n) orbits of length n. So, in
each of the \(n) orbits, there are exactly n elements. If we sum up d - \(d) for every d | n, we
get all the elements that are split up in orbits of length < n. In fact, we get all the elements
of a subgroup Fan < AGL(1, q) corresponding to the subfield GF(2") of GF(2%¢*!). Since there
are 2" elements in GF(2"), we have the following.

2" = "d- \d)
din

If we take G(n) = 2", F(d) = d- \(d), and apply Lemma 7, we get n- \(n) = de M(%)Qd. O

To get the final number of orbits, we have to sum up all the orbits for n | 2¢ 4+ 1,n # 1. The
only element of () that is in an orbit of length 1 is ;. So, p2 has to be chosen in an orbit of
length # 1. If follows that the number of orbits is » 2.1 A(n). This gives us the number of

n#l
non-isomorphic ordered pairs of involutions [pg, p2]. Therefore, the number of non-isomorphic

unordered pairs of involutions {po, p2} is 3 > _nj2e+1 A(n) as stated in Theorem 1.
n#l
STEP 3 (Continued)

To choose p1, we cannot apply exactly the same argument as in section 5.1. In STEP 2 we
fix the two involutions py and ps. Applying the same computation as in the case 5.1, there are,
up to isomorphism, at most ¢ — 1 choices for p;. However, this time, the stabilizer of pg and ps
in Aut(G) is not necessarily Cg(po). Let us illustrate this with the following example.

Example 1. Take GF(2')*. A subgroup of this group is GF(2%)* = GF(8)*. We can write
GF(2P)* = {1”2 ,i215*2} yi # 1 and i?"~1 = 1. Then, GF(8*) = {1,i%081 40812 ...}
because 2'° — 1 = 32767 and 32767/(8 — 1) = 4681. So GF(8)* =< i*%®l > and og(i468!) = 44681,

If we let pg := a1 and p2 = ayaes1, og is an automorphism that fizes the two involutions but not
every element of Q). For instance, og(ay2) # oe.

This example shows that the ¢ — 1 non-conjugated choices for p; give, in certain cases, less
than ¢ — 1 choices up to isomorphism. It depends on the choice of ps. Indeed, if we pick ps in an
orbit of length < 2e + 1, the stabilizer of py and ps is a proper overgroup of Cg(pp). This latter
subgroup fuses some of the ¢ — 1 orbits of length ¢ together. To obtain the number of ordered



triples of involutions [pg, p1, p2], we cannot just multiply the number of possibilities for [pg, p2]
by a fixed number of possibilities for p1. In fact, as C () (?0)nC au ) (72) = BBy : Caesa,

we have to multiply every single A(n) by a number depending on 2e + 1 and n.

Lemma 9. Let ¢(n,2e + 1) be the number of candidates for p1 up to isomorphism, provided
there are A(n) possibilities for pa. Then,

Y(n,2e+1) =

Z Zd|m N(%)(Tm - 1)
- :
=
Proof. If there are A(n) possibilities for choosing po, then ps is in an orbit of length n | 2e+41 and
Caut(@) (o) N Cauy(@)(p2) = B Ey : C2exn =: S. This group S acts on the ¢*(q — 1) involutions

in G\ Cg(po) that are the candidates for p;. Up to conjugacy, these ¢?(q — 1) involutions are
in ¢ — 1 orbits of length ¢®. Let us look at the action of the 2671—“% outer automorphisms in S,
namely Cze+1, on the ¢ — 1 orbits. At first sight, any divisor m of 2%1 is a candidate for an

orbit lengtﬁ. Orbits of length m are obtained in Sz(2™"). However, the only involutions that
are in orbits of length m are those in Sz(2™™) that are not in a Suzuki-subgroup of the form
Sz(2"4), with d | m. These last involutions will be in orbits of length d. Let a(m) be the number
of candidates for p; in Sz(2™") that are in no Suzuki-subgroup of the form Sz(2"¢), with d | m.
If we sum up all the a(d) for every d | m we get all the involutions that are non-commuting
with pp in Sz(2"). As we have already seen, there are exactly 2" — 1 such involutions. So
2djm (d) = 2" — 1. If we take G(m) = 2" — 1, F(d) = a(d) and apply Lemma 7, we get the
following expression for a(m).

alm) = ()2 ~ 1)
dlm

(m)

There are a(m) involutions that are split up in orbits of length m. This gives O‘T orbits of
m - ¢* candidates for p;. Every candidate has to be in exactly one orbit of length m with
m | % Involutions that are in a same orbit are equivalent by isomorphism. So to get the
complete number of candidates for p;, once ps is fixed in an orbit of length n, we have to count
the number of orbits in which the ¢?(q — 1) involutions of G'\ Cg(po) are split up, for a fixed

(m)

n. The complete number of orbits is obtained by summing up all the am
m | QETH Therefore, up to isomorphism, the number of choices for p; is the following.

for every possible

m nd __
pzern = 3 A g XawuCHEM Y

m m
2e+1 2e+1
m| 2 m| 2

O]

Combining Lemma 8 and Lemma 9, there are ), 2.1 A(n) - 9(n,2e + 1) non-isomorphic
n#l
ordered triple of involutions [pg, p1,p2]. As in section 5.1, this number has to be divided by 2



and so we get

- Z A(n) - ¥(n, 2e + 1) (1)

n\28+1
n#l
triples of involutions {po, p1,p2}, up to isomorphism and duality. However, since 2e 4+ 1 is no
longer a prime, Sz(q) has subgroups that are Suzuki groups too. Therefore it might be that the
three involutions generate a sub-Suzuki group, not the full Sz(g). In section 3, it was shown
that Sz(q’), with ¢’ = s, is a subgroup of Sz(q), with ¢ = 2e + 1, if s|2¢ + 1 and s > 2. Take an
example, say Sz(2!%), to illustrate this idea.

Example 2. The divisors of 15 are 1, 3, 5 and 15. By Lemma 8, there are 2 orbits of length 3,
6 of length 5 and 2182 of length 15. Lemma 9 gives

2 -1 2B _1-(22-1 215 _ 93

¥(3,15) = : + 5( ):7+5:7+6552:6559,
21 2Bb_1_-(25-1 215 _ 95

(5,15) = — 3< )=31+3=31+10912:10943, and
215 _ 1

w(15,15):f:215—1:32767.

Formula (1) gives $(A(3)1(3,15)+A(5)9(5, 15)+ A(15)(15, 15)) = 35788185. So, up to isomor-
phism and duality, there are 35788185 triples {po, p1, p2}. We know that Sz(2'°) has subgroups
isomorphic to Sz(2%) and Sz(2°). Therefore, some triples will not generate Sz(2'°), but a sub-
group isomorphic to Sz(23) or Sz(2°). We have to subtract these triples from all the triples of
involutions we have found. Since 3 and 5 are prime numbers, we can use Theorem 4 to compute
theses triples.

Definition 3. Inv(q) is the number of orbits of Aut(Sz(q)) on the set

{{po, p1.p2} | P§ = P} = P3 = (pop2)® = ls,(g): (P0. p1, p2) = Sz(q) } -

In our example,

Inv(2'%) = Z)\ ¥(n,15) 255_2(25—1)—233_2(23—1))
n|15
n#l
= 35788185 — 93 — 7
= 35788085.

For Sz(2'%), we get 35788085 triples of involutions {po, p1, p2} such that (pop2)? = Lgy(215) and
{po, p1, p2) = Sz(2'). Therefore, up to isomorphism and duality, Sz(2'°) acts flag-transitively
on 35788085 polyhedra.

This example shows clearly that (1) is not our final result. For the moment, the only thing
we have is the following lemma.

10



Lemma 10. Let e > 0 be an integer. Up to isomorphism and duality, there are

1
3 Z A(n)y(n,2e + 1)
n|2e+1
n#l
triples of involution {po, p1, p2} in Sz(22¢T1), such that (pop2)? = Lsa(gy and {po, p1, p2) = Sz(q’),
with ¢ =22/ 2f +1|2e+1 and f # 0.

Remark 1. The reader may easily check that this formula is the one given in Theorem 4 if
2e 4+ 1 is a prime.

To obtain the final formula, we subtract from (1) the number of triples of involutions which
generate a sub-Suzuki-group of the given Suzuki group. As Lemma 10 states,

% Z A(n)(n,2e +1) = Z Inv(29).

n|2e+1 d|2e+1
n#l
Let us take F(d) = Inv(2%) and G(2e 4+ 1) = 5> ,2e11 A(n)1(n, 2¢ + 1). By Lemma 7, we get
n#l
2e+1
Fee+1) = 3 w600
d|2e+1
2¢+1.1
2e+1\ __
= Inv(2ZH) = 3 p(=——)5 D Am)g(n, d)
d|2e+1 n|d
n#l
1 2e+1
=5 3 W A d).
d|2e+1 n|d
n#l

Therefore, up to isomorphism and duality, there are

5 > D S A a)

d|2e+1 nld
n#l

triples of involutions {pg, p1,p2} such that (pop2)? = Lsy(q) and (po, p1, p2) = Sz(q). They are
all non-degenerate for, otherwise, Sz(q) = 2 x Da, for some integer n. They all satisfy the
intersection property by Lemma 4 and the subgroup structure of Sz(q). This finishes the proof
of Theorem 2.
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