

ON THE NUMBER OF ABSTRACT REGULAR POLYTOPES WHOSE AUTOMORPHISM GROUP IS A SUZUKI SIMPLE GROUP $Sz(q)$

Ann Kiefer and Dimitri Leemans
Université Libre de Bruxelles
Département de Mathématiques - C.P.216
Boulevard du Triomphe
B-1050 Bruxelles

September 27, 2011

Abstract

We determine, up to isomorphism and duality, the number of abstract regular polytopes of rank three whose automorphism group is a Suzuki simple group $Sz(q)$, with q an odd power of 2. No polytope of higher rank exists and, therefore, the formula obtained counts all abstract regular polytopes of $Sz(q)$. Moreover, there are no degenerate polyhedra. We also obtain, up to isomorphism, the number of pairs of involutions.

1 Introduction

In [6], Leemans and Vauthier built an atlas of abstract regular polytopes for small groups. The groups $Sz(8)$ and $\text{Aut}(Sz(8))$ are among the groups analysed. It turns out that, up to isomorphism and duality, $Sz(8)$ has seven polytopes, all of rank three, and that $\text{Aut}(Sz(8))$ has no polytope.

In [3], Leemans proved that, if $G := Sz(q)$ with $q \neq 2$ an odd power of 2, all the abstract regular polytopes having G as automorphism group are of rank three (and there exists at least one such polytope for each value of q). Moreover, if $Sz(q) < G \leq \text{Aut}(Sz(q))$, he showed that G is not a C-group and, therefore, that there cannot exist an abstract regular polytope having G as automorphism group.

In this article, we count, up to isomorphism and duality, the number of polyhedra on which a group $Sz(q)$, with $q = 2^{2e+1}$ and $e > 0$ an integer, acts as a regular flag-transitive automorphism group. To make the proof easier to understand, we split our analysis in two parts. First we look at $Sz(q)$ with q an odd prime power of 2. Then we look at $Sz(q)$ with q an odd power of 2. We first count how many pairs of commuting involutions there are up to isomorphism in a Suzuki simple group. We obtain the following result which is of interest not only for the purpose of this paper, but for group theory in general.

Theorem 1. *Let $G := \text{Sz}(q)$ with $q = 2^{2e+1}$ and $e > 0$ an integer. Up to isomorphism, there are*

$$\frac{1}{2} \sum_{\substack{n|2e+1 \\ n \neq 1}} \lambda(n)$$

pairs of commuting involutions in G , where

$$\lambda(n) = \frac{1}{n} \sum_{d|n} \mu\left(\frac{n}{d}\right) \cdot 2^d$$

and μ is the Möbius function.

The following result is the main result of this article.

Theorem 2. *Up to isomorphism and duality, a given Suzuki group $\text{Sz}(q)$, with $q = 2^{2e+1}$ and $e > 0$ an integer, acts flag-transitively on*

$$\frac{1}{2} \sum_{\substack{2f+1|2e+1 \\ n \neq 1}} \mu\left(\frac{2e+1}{2f+1}\right) \sum_{\substack{n|2f+1 \\ n \neq 1}} \lambda(n) \psi(n, 2f+1)$$

polyhedra, where

$$\lambda(n) = \frac{1}{n} \sum_{d|n} \mu\left(\frac{n}{d}\right) \cdot 2^d \text{ and}$$

$$\psi(n, 2f+1) = \sum_{m \mid \frac{2f+1}{n}} \frac{\sum_{d|m} \mu\left(\frac{m}{d}\right) (2^{nd} - 1)}{m}.$$

All these polyhedra are non-degenerate, i.e. have a Schläfli symbol with entries ≥ 3 .

Observe that Sah [9] and Conder et al. [1] have computed, up to isomorphism, the number of regular hypermaps on which a group of type $\text{PSL}(2, q)$ or $\text{PGL}(2, q)$ acts as a regular automorphism group. We recall that, as seen in [4], the $\text{PSL}(2, q)$ groups act on polytopes of rank at most 4 and that there are only two polytopes of rank 4 having a $\text{PSL}(2, q)$ as flag-transitive regular automorphism group. They are Grünbaum's 11-cells (for $q = 11$) and Coxeter's 57 cells (for $q = 19$). For the $\text{PGL}(2, q)$ groups, the situation is quite similar. In [5], it is shown that these groups act on polytopes of rank at most 4 and that there is a unique polytope of rank 4 having a $\text{PGL}(2, q)$ flag-transitive automorphism group. It is the 4-simplex and the corresponding group is $\text{PGL}(2, 5) \cong \text{Sym}(5)$.

Acknowledgements : We thank Wieb Bosma, Francis Buekenhout, Marston Conder and the referees for their interesting comments related to this research. We also acknowledge support by the “Communauté Française de Belgique - Actions de Recherche Concertées”.

2 The Suzuki simple groups and their elements

We refer to the definition of the Suzuki groups as given in [7]. The lemmas of this section are all proven in [7] too.

Let \mathcal{K} be a field of characteristic 2 with $|\mathcal{K}| > 2$. Let σ be an automorphism of \mathcal{K} such that $x^{\sigma^2} = x^2$ for each x in \mathcal{K} . Let \mathcal{B} be the 3-dimensional projective space over \mathcal{K} and let (x_0, x_1, x_2, x_3) be the coordinates of a point of \mathcal{B} . Let E be the plane defined by the equation $x_0 = 0$ and let $U = (0, 1, 0, 0)\mathcal{K}$. We introduce coordinates in the affine space \mathcal{B}_E by $x = \frac{x_2}{x_0}$, $y = \frac{x_3}{x_0}$ and $z = \frac{x_1}{x_0}$. Finally, let \mathcal{D} be the set of points of \mathcal{B} consisting of U and all those points of \mathcal{B}_E whose coordinates (x, y, z) satisfy the equation

$$z = xy + x^{\sigma+2} + y^\sigma,$$

where $x^{\sigma+2} = x^\sigma x^2$. We denote by $\text{Sz}(\mathcal{K}, \sigma)$ the group of all projective collineations of \mathcal{B} which leave \mathcal{D} invariant.

Lemma 1. *Let $e > 0$ be an integer. If \mathcal{K} is isomorphic to $\text{GF}(2^{2e+1})$, then \mathcal{K} admits exactly one automorphism σ with $x^{\sigma^2} = x^2$ for all x in \mathcal{K} . If \mathcal{K} is isomorphic to $\text{GF}(2^{2e})$, then \mathcal{K} does not possess an automorphism σ with $x^{\sigma^2} = x^2$ for all x in \mathcal{K} .*

This lemma implies that, if \mathcal{K} is isomorphic to $\text{GF}(q)$ with $q = 2^{2e+1}$, we may write $\text{Sz}(q)$ instead of $\text{Sz}(\mathcal{K}, \sigma)$. The groups $\text{Sz}(q)$ are the Suzuki groups named after Michio Suzuki who found them in 1960. The generalizations $\text{Sz}(\mathcal{K}, \sigma)$, where \mathcal{K} is a field of characteristic 2, not necessarily finite, are due to Rimhak Ree and Jacques Tits (see for instance [11]). The set \mathcal{D} is an ovoid as defined below.

Definition 1. *An ovoid is a non-empty point-set of a projective 3-space that satisfies the following three conditions.*

1. *No three points are collinear;*
2. *If $p \in \mathcal{D}$, there exists a plane E of \mathcal{B} with $\mathcal{D} \cap E = \{p\}$;*
3. *If $p \in \mathcal{D}$ and if E is a plane of \mathcal{B} with $\mathcal{D} \cap E = \{p\}$, then all lines l through p which are not contained in E carry a point of \mathcal{D} distinct from p .*

For $a, b \in \mathcal{K}$, we denote by $\tau(a, b)$ the mapping defined by

$$(x, y, z)^{\tau(a, b)} = (x + a, y + b + a^\sigma x, z + ab + a^{\sigma+2} + b^\sigma + ay + a^{\sigma+1}x + bx),$$

where σ is the involutory automorphism of \mathcal{K} defined above. It follows that $\tau(a, b)\tau(c, d) = \tau(a + c, ac^\sigma + b + d)$. For $k \in \mathcal{K}^*$, we define the collineation $\eta(k)$ by

$$(x, y, z)^{\eta(k)} = (kx, k^{\sigma+1}y, k^{\sigma+2}z).$$

A straightforward computation shows that $\tau(a, b)\eta(k) = \eta(k)\tau(ka, k^{\sigma+1}b)$. Let ω be the collineation of \mathcal{B} defined by $(x_0, x_1, x_2, x_3)^\omega = (x_1, x_0, x_3, x_2)$ and write $\text{Sz}(\mathcal{K}, \sigma)_U$ for the stabilizer of U in $\text{Sz}(\mathcal{K}, \sigma)$.

Structure	Order	Index	Description
$(E_q : E_q) : C_{q-1}$	$q^2 \cdot (q-1)$	$q^2 + 1$	Normalizer of a 2-Sylow, stabilizer of a point of the ovoid.
$D_{2(q-1)}$	$2 \cdot (q-1)$	$\frac{(q^2+1) \cdot q^2}{2}$	Stabilizer of a pair of points of the ovoid.
$C_{\alpha_q} : C_4$	$\alpha_q \cdot 4$	$\frac{q^2(q-1)}{4\beta_q}$	Normalizer of a C_{α_q} .
$C_{\beta_q} : C_4$	$\beta_q \cdot 4$	$\frac{q^2(q-1)}{4\alpha_q}$	Normalizer of a C_{β_q} .
$\text{Sz}(2^{2f+1})$ with $2f+1 \mid_M 2e+1$	$(s^2+1) \cdot s^2 \cdot (s-1)$		

Table 1: The maximal subgroups of $\text{Sz}(q)$

Lemma 2. *Let \mathcal{K} be a commutative field of characteristic 2 with $|\mathcal{K}| > 2$ and assume that \mathcal{K} admits an automorphism σ such that $x^{\sigma^2} = x^2$ for all $x \in \mathcal{K}$. If \mathcal{D} is the point set defined above in the projective space of dimension 3 over \mathcal{K} , then $\text{Sz}(\mathcal{K}, \sigma)$ acts doubly transitively on \mathcal{D} . Moreover, if $\gamma \in \text{Sz}(\mathcal{K}, \sigma)_U$, then there exists exactly one triple $(k, a, b) \in \mathcal{K}^* \times \mathcal{K} \times \mathcal{K}$ with $\gamma = \eta(k)\tau(a, b)$, and if $\gamma \in \text{Sz}(\mathcal{K}, \sigma) \setminus \text{Sz}(\mathcal{K}, \sigma)_U$, then there exists exactly one 5-tuple $(k, a, b, c, d) \in \mathcal{K}^* \times \mathcal{K} \times \mathcal{K} \times \mathcal{K} \times \mathcal{K}$ with $\gamma = \eta(k)\tau(a, b)\omega\tau(c, d)$.*

Let $\text{PG}(3, q)$ be the projective space over the field $\text{GF}(q)$ and let \mathcal{D} be an ovoid of $\text{PG}(3, q)$. If Π is a plane of $\text{PG}(3, q)$ such that $|\Pi \cap \mathcal{D}| > 1$, we call $\Pi \cap \mathcal{D}$ a *circle*. The following lemma ensures that every circle has the same number of points and, moreover, that these circles are ovals.

Lemma 3. *If \mathcal{D} is an ovoid in $\text{PG}(3, q)$, then $|\mathcal{D}| = q^2 + 1$. If E is a plane of $\text{PG}(3, q)$, then E is either a tangent plane of \mathcal{D} or $E \cap \mathcal{D}$ consists of the $q + 1$ points of an oval of E .*

3 The maximal subgroups of $\text{Sz}(q)$

There are four numbers that play an important role in the subgroup structure of $\text{Sz}(q)$. They are respectively q , $q-1$, $q+r+1$ and $q-r+1$ where $r = \sqrt{2q}$. We write $q+r+1 =: \alpha_q$ and $q-r+1 =: \beta_q$. In [2], the following lemma is proven.

Lemma 4. *The numbers $q-1$, α_q and β_q are pairwise coprime.*

Table 1 gives the maximal subgroups of a Suzuki group. These have been computed by Suzuki in [10]. We write $m \mid_M n$ when m is a proper maximal divisor of n . The groups E_n are elementary abelian groups of order n . The groups C_n are cyclic groups of order n . The groups D_{2n} are dihedral groups of order $2n$. The symbols $\hat{\cdot}$ and \cdot stand for non-split and split extensions.

4 Abstract regular polytopes and string C-groups

Thin regular residually connected geometries with a linear diagram, abstract polytopes and string C-groups are the same mathematical objects. The link between these objects may be found for instance in [8]. We take here the viewpoint of string C-groups because it is the easiest and the most efficient one to define abstract regular polytopes.

As defined for instance in [8], a C-group is a group G generated by pairwise distinct involutions $\rho_0, \dots, \rho_{n-1}$, which satisfy the following property, called the *intersection property*.

$$\forall J, K \subseteq \{0, \dots, n-1\}, \langle \rho_j \mid j \in J \rangle \cap \langle \rho_k \mid k \in K \rangle = \langle \rho_j \mid j \in J \cap K \rangle$$

A C-group $(G, \{\rho_0, \dots, \rho_{n-1}\})$ is a string C-group if its generators satisfy the following relations.

$$(\rho_j \rho_k)^2 = 1_G \quad \forall j, k \in \{0, \dots, n-1\} \text{ with } |j - k| \geq 2$$

5 Suzuki groups and polytopes

In [3], the following result is proven.

Theorem 3. *Let $\mathrm{Sz}(q) \leq G \leq \mathrm{Aut}(\mathrm{Sz}(q))$ with $q = 2^{2e+1}$ and $e > 0$ an integer. Then G is a C-group if and only if $G = \mathrm{Sz}(q)$. Moreover, if $(G, \{\rho_0, \dots, \rho_{n-1}\})$ is a string C-group, then $n = 3$.*

We may translate this theorem in abstract regular polytope theory. If $\mathrm{Sz}(q) < G \leq \mathrm{Aut}(\mathrm{Sz}(q))$, then G is not the automorphism group of an abstract regular polytope. If $G = \mathrm{Sz}(q)$, there exists an abstract regular polytope \mathcal{P} such that $G = \mathrm{Aut}(\mathcal{P})$. Moreover, if \mathcal{P} is an abstract regular polytope such that $G = \mathrm{Aut}(\mathcal{P})$, then \mathcal{P} must be an abstract polyhedron, i.e. a rank three polytope.

Let $G := \mathrm{Sz}(q)$ with $q = 2^{2e+1}$ and $e > 0$ an integer. We consider that a polytope and its dual are the same object. In order to determine, up to isomorphism and duality, the number of abstract regular polytopes whose automorphism group is G , we must count, up to isomorphism, the number of unordered triples of involutions $\{\rho_0, \rho_1, \rho_2\}$ in G , such that $(\rho_0 \rho_2)^2 = 1_G$ and $\langle \rho_0, \rho_1, \rho_2 \rangle = G$. To do this, we first count the number of ordered triples of involutions $[\rho_0, \rho_1, \rho_2]$. This is done in 3 steps. In step 1, we count the number of non-isomorphic choices for ρ_0 . In step 2, we fix ρ_0 and look at the number of non-isomorphic choices for an ordered pair of involutions $[\rho_0, \rho_2]$, where ρ_2 has to commute with ρ_0 . In step 3, we suppose ρ_0 and ρ_2 fixed and we count the number of possibilities left to choose ρ_1 in order to obtain an ordered triple of involutions $[\rho_0, \rho_1, \rho_2]$ satisfying the given properties. Finally, we divide the result by two, as no polyhedron of $\mathrm{Sz}(q)$ is self-dual. The intersection property is automatically satisfied thanks to Lemma 4.

STEP 1

The following lemma is given without proof since it is well known and easy to prove.

Lemma 5. *In $\mathrm{Sz}(q)$, there are $(q^2 + 1)(q - 1)$ involutions that are all pairwise conjugate.*

Therefore, up to conjugacy (and hence up to isomorphism), there is a unique choice for ρ_0 in G .

STEP 2

Suppose that ρ_0 is fixed. Since ρ_2 commutes with ρ_0 , we have $\rho_2 \in C_G(\rho_0) \cong E_q : E_q \leq E_q : E_q : C_{q-1}$. Obviously, in $C_G(\rho_0)$, there are $q-1$ involutions, namely ρ_0 and $q-2$ others. All of the $q-1$ involutions are in a subgroup of G isomorphic to $\text{AGL}(1, q)$. These involutions correspond to translations of $\text{AGL}(1, q)$. Under conjugation in G , the stabilizer of ρ_0 fixes all the involutions of the centralizer, as the $\text{AGL}(1, q)$ subgroup does. So, up to conjugacy, there are $q-2$ ordered pairs of commuting involutions in $\text{Sz}(q)$. We now look at the action of $\text{Aut}(G) = G : C_{2e+1}$ on these involutions. It amounts to looking at the action of $\text{Aut}(\text{AGL}(1, q)) = \text{AGL}(1, q) : C_{2e+1}$.

Elements of $\text{AGL}(1, q)$ may be written as follows.

$$\alpha(a, b) : \text{GF}(q) \rightarrow \text{GF}(q) : x \rightarrow ax + b \text{ with } a \neq 0, a, b \in \text{GF}(q).$$

The involutions are the $\alpha(1, b)$ with $b \neq 0$, i.e. the translations of the affine line $\text{AGL}(1, q)$. Without loss of generality we may suppose $\rho_0 = \alpha(1, 1)$ and $\rho_2 = \alpha(1, b)$, with $b \neq 1$. There are $q-2$ possible values for b .

In $\text{Aut}(\text{AGL}(1, q))$, the set of field automorphisms is added. These automorphisms are as follows.

$$\sigma_n : \text{GF}(q) \rightarrow \text{GF}(q) : x \rightarrow x^n \text{ where } n = 2^m \text{ with } m = 0, \dots, 2e.$$

Recall that the involutions in $\text{AGL}(1, q)$ are the mappings $\alpha_a : \text{AGL}(1, q) \rightarrow \text{AGL}(1, q) : x \rightarrow x + a$ with $a \in \text{GF}(q)^*$. We look at the action of $\text{Aut}(\text{AGL}(1, q))$ on the set of involutions $\Omega := \{\alpha_a \mid a \in \text{GF}(q)^*\}$. We want to know how many orbits of ordered pairs of involutions $[\alpha_a, \alpha_b]$ ($\alpha_a, \alpha_b \in \Omega$), there are under the action of $\text{Aut}(\text{AGL}(1, q))$.

Since $\text{Aut}(\text{AGL}(1, q))$ is transitive on Ω , there is a unique choice for α_a . Assume $a = 1$. Take $H := \text{Aut}(\text{AGL}(1, q))_{\alpha_1} = \{\sigma_n \mid n = 2^m, m = 0, \dots, 2e\}$. Then $|H| = 2e+1$. Let us study the action of H on $\Omega \setminus \{\alpha_1\}$. We distinguish between the case where $2e+1$ is a prime and the case where $2e+1$ is not a prime.

5.1 $q = 2^{2e+1}$ with $2e+1$ a prime

Here, $|H| = |H_{\alpha_b}| \cdot |H(\alpha_b)| \forall \alpha_b \in \Omega$. Since $2e+1$ is a prime, the orbits have length 1 or $2e+1$. There is one orbit of length 1, namely $\{\alpha_1\}$. The remaining $q-2$ involutions of Ω are split in $\frac{q-2}{2e+1}$ orbits of length $2e+1$. The following lemma ensures that $\frac{q-2}{2e+1}$ is a natural number.

Lemma 6 (Fermat, 1640). *If p is a prime number then p divides $2^p - 2$.*

The discussion above implies that, up to isomorphism, there are $\frac{q-2}{2e+1}$ ordered pairs of commuting involutions in G , and $\frac{q-2}{2(2e+1)}$ unordered pairs. This settles Theorem 1 when $2e+1$ is a prime.

STEP 3

Now we count the number of possibilities for choosing ρ_1 . As seen before, there are $q-1$ involutions of G in $C_G(\rho_0)$. So there are $q^2(q-1)$ involutions in G that are non-commuting with ρ_0 . Step 2 gives $I := \text{Aut}(G)_{[\rho_0, \rho_2]} \cong C_G(\rho_0) \cong C_G(\rho_2)$. Clearly, each involution in $C_G(\rho_0)$ is fixed by I . By definition, none of the $q^2(q-1)$ involutions not in $C_G(\rho_0)$ are fixed by I . Hence, for every possible ρ_1 , $|I_{\rho_1}| = 1$. As $C_G(\rho_0) \cong E_q : E_q$, $|I| = |C_G(\rho_0)| = q^2$. So $|I(\rho_1)| = q^2$ for every possible ρ_1 . Therefore, the length of the orbit of ρ_1 under the action of $C_G(\rho_0)$ is

q^2 and $C_G(\rho_0)$ splits the $q^2(q-1)$ involutions in $q-1$ orbits of length q^2 each. The action of $\text{Inn}(\text{AGL}(1, q))$ on the involutions that are non-commuting with ρ_0 gives $q-1$ non-conjugate choices for ρ_1 . The outer automorphisms do not fix ρ_0 and ρ_2 at the same time. Since we want both involutions to be fixed, we cannot apply an outer automorphism in this case. So we have $q-1$ non-isomorphic choices for ρ_1 .

Finally, in $\text{Sz}(q)$, up to isomorphism, there are $\frac{q-2}{2e+1}(q-1)$ ordered triples of involutions $[\rho_0, \rho_1, \rho_2]$ such that $(\rho_0\rho_2)^2 = 1_{\text{Sz}(q)}$ and $\langle \rho_0, \rho_1, \rho_2 \rangle = \text{Sz}(q)$. Since ρ_0 and ρ_2 commute and have the same property, we can exchange them. The polytopes yielded by $[\rho_0, \rho_1, \rho_2]$ and by $[\rho_2, \rho_1, \rho_0]$ are dual. None of these polytopes may be self-dual. Indeed, suppose $[\rho_0, \rho_1, \rho_2]$ gives a self-dual polyhedron. Then, there must be an involution $g \in \text{Aut}(G)$ such that $g(\rho_0) = \rho_2$, $g(\rho_2) = \rho_0$ and $g(\rho_1) = \rho_1$. The last condition implies that $g \in C_G(\rho_1)$. Therefore, g cannot swap ρ_0 and ρ_2 . Hence, up to isomorphism and duality, there are $\frac{q-2}{2(2e+1)}(q-1)$ triples of involutions $\{\rho_0, \rho_1, \rho_2\}$ such that $(\rho_0\rho_2)^2 = 1_{\text{Sz}(q)}$ and $\langle \rho_0, \rho_1, \rho_2 \rangle = \text{Sz}(q)$. All these triples satisfy the intersection property by Lemma 4 and the subgroup structure of $\text{Sz}(q)$. It is obvious that all polyhedra of $\text{Sz}(q)$ are non-degenerate for, otherwise, $\text{Sz}(q) \cong 2 \times D_{2n}$ for some integer n . In other words, we get the following theorem.

Theorem 4. *A given Suzuki group $\text{Sz}(q)$, with $q = 2^{2e+1}$ and $2e+1$ a prime, acts flag-transitively on $\frac{q-2}{2(2e+1)}(q-1)$ polyhedra up to isomorphism and duality. All these polyhedra are non-degenerate.*

5.2 $q = 2^{2e+1}$ with $2e+1$ not a prime

We are in the same situation as above section 5.1. Recall that STEP 1 gives us only one choice for ρ_0 .

STEP 2 (Continued)

We want to count the number of orbits of ordered pairs of involutions $[\alpha_1, \alpha_b]$, with $\alpha_b \in \Omega \setminus \{\alpha_1\}$, under the action of $\text{Aut}(\text{AGL}(1, q))$. Let $H := \text{Aut}(\text{AGL}(1, q))_{\alpha_1} = \{\sigma_n \mid n = 2^m, m = 0, \dots, 2e\}$. Since $2e+1$ is no longer a prime, the orbits yielded by the field automorphisms may have a length other than 1 or $2e+1$. In fact they can have any length n , with $n \mid 2e+1$. Let $\lambda(n)$ be the number of orbits of length n under the action of H on $\Omega \cup \{1_G\}$. To determine $\lambda(n)$, we use the Möbius function.

Definition 2. *The Möbius function is the function μ on the positive integers given by*

$$\mu(n) = \begin{cases} 1 & \text{if } n = 1, \\ (-1)^k & \text{if } n = p_1 \cdots p_k, \text{ where } p_1, \dots, p_k \text{ are pairwise distinct primes,} \\ 0 & \text{if } n \text{ is not squarefree.} \end{cases}$$

The Möbius function has the following important property, also known as *Möbius inversion*.

Lemma 7. *Let F and G be functions on the positive integers. If*

$$G(n) = \sum_{d|n} F(d),$$

then

$$F(n) = \sum_{d|n} \mu\left(\frac{n}{d}\right) G(d),$$

and conversely.

Using this definition and this lemma, we get the following result.

Lemma 8. *With the notations as above, for every $n \mid 2e + 1$,*

$$\lambda(n) = \frac{1}{n} \sum_{d|n} \mu\left(\frac{n}{d}\right) \cdot 2^d.$$

Proof. By the definition of $\lambda(n)$, for every $n \mid 2e + 1$, there are $\lambda(n)$ orbits of length n . So, in each of the $\lambda(n)$ orbits, there are exactly n elements. If we sum up $d \cdot \lambda(d)$ for every $d \mid n$, we get all the elements that are split up in orbits of length $\leq n$. In fact, we get all the elements of a subgroup $E_{2^n} \leq \text{AGL}(1, q)$ corresponding to the subfield $\text{GF}(2^n)$ of $\text{GF}(2^{2e+1})$. Since there are 2^n elements in $\text{GF}(2^n)$, we have the following.

$$2^n = \sum_{d|n} d \cdot \lambda(d)$$

If we take $G(n) = 2^n$, $F(d) = d \cdot \lambda(d)$, and apply Lemma 7, we get $n \cdot \lambda(n) = \sum_{d|n} \mu\left(\frac{n}{d}\right) 2^d$. \square

To get the final number of orbits, we have to sum up all the orbits for $n \mid 2e + 1, n \neq 1$. The only element of Ω that is in an orbit of length 1 is α_1 . So, ρ_2 has to be chosen in an orbit of length $\neq 1$. It follows that the number of orbits is $\sum_{\substack{n \mid 2e+1 \\ n \neq 1}} \lambda(n)$. This gives us the number of non-isomorphic ordered pairs of involutions $[\rho_0, \rho_2]$. Therefore, the number of non-isomorphic unordered pairs of involutions $\{\rho_0, \rho_2\}$ is $\frac{1}{2} \sum_{\substack{n \mid 2e+1 \\ n \neq 1}} \lambda(n)$ as stated in Theorem 1.

STEP 3 (Continued)

To choose ρ_1 , we cannot apply exactly the same argument as in section 5.1. In STEP 2 we fix the two involutions ρ_0 and ρ_2 . Applying the same computation as in the case 5.1, there are, up to isomorphism, at most $q - 1$ choices for ρ_1 . However, this time, the stabilizer of ρ_0 and ρ_2 in $\text{Aut}(G)$ is not necessarily $C_G(\rho_0)$. Let us illustrate this with the following example.

Example 1. Take $\text{GF}(2^{15})^*$. A subgroup of this group is $\text{GF}(2^3)^* = \text{GF}(8)^*$. We can write $\text{GF}(2^{15})^* = \{1, i, i^2, \dots, i^{2^{15}-2}\}$, $i \neq 1$ and $i^{2^{15}-1} = 1$. Then, $\text{GF}(8)^* = \{1, i^{4681}, i^{4681 \cdot 2}, \dots\}$ because $2^{15} - 1 = 32767$ and $32767/(8 - 1) = 4681$. So $\text{GF}(8)^* = \langle i^{4681} \rangle$ and $\sigma_8(i^{4681}) = i^{4681}$. If we let $\rho_0 := \alpha_1$ and $\rho_2 := \alpha_{i^{4681}}$, σ_8 is an automorphism that fixes the two involutions but not every element of Ω . For instance, $\sigma_8(\alpha_{i^2}) \neq \alpha_{i^2}$.

This example shows that the $q - 1$ non-conjugated choices for ρ_1 give, in certain cases, less than $q - 1$ choices up to isomorphism. It depends on the choice of ρ_2 . Indeed, if we pick ρ_2 in an orbit of length $< 2e + 1$, the stabilizer of ρ_0 and ρ_2 is a proper overgroup of $C_G(\rho_0)$. This latter subgroup fuses some of the $q - 1$ orbits of length q^2 together. To obtain the number of ordered

triples of involutions $[\rho_0, \rho_1, \rho_2]$, we cannot just multiply the number of possibilities for $[\rho_0, \rho_2]$ by a fixed number of possibilities for ρ_1 . In fact, as $C_{Aut(G)}(?)0nC_{Aut(G)}(?)2 = E_q \hat{\cdot} E_q : C_{\frac{2e+1}{n}}$, we have to multiply every single $\lambda(n)$ by a number depending on $2e+1$ and n .

Lemma 9. *Let $\psi(n, 2e+1)$ be the number of candidates for ρ_1 up to isomorphism, provided there are $\lambda(n)$ possibilities for ρ_2 . Then,*

$$\psi(n, 2e+1) = \sum_{m \mid \frac{2e+1}{n}} \frac{\sum_{d \mid m} \mu(\frac{m}{d})(2^{nd} - 1)}{m}.$$

Proof. If there are $\lambda(n)$ possibilities for choosing ρ_2 , then ρ_2 is in an orbit of length $n \mid 2e+1$ and $C_{Aut(G)}(\rho_0) \cap C_{Aut(G)}(\rho_2) = E_q \hat{\cdot} E_q : C_{\frac{2e+1}{n}} =: S$. This group S acts on the $q^2(q-1)$ involutions in $G \setminus C_G(\rho_0)$ that are the candidates for ρ_1 . Up to conjugacy, these $q^2(q-1)$ involutions are in $q-1$ orbits of length q^2 . Let us look at the action of the $\frac{2e+1}{n}$ outer automorphisms in S , namely $C_{\frac{2e+1}{n}}$, on the $q-1$ orbits. At first sight, any divisor m of $\frac{2e+1}{n}$ is a candidate for an orbit length. Orbit lengths m are obtained in $Sz(2^{nm})$. However, the only involutions that are in orbits of length m are those in $Sz(2^{nm})$ that are not in a Suzuki-subgroup of the form $Sz(2^{nd})$, with $d \mid m$. These last involutions will be in orbits of length d . Let $\alpha(m)$ be the number of candidates for ρ_1 in $Sz(2^{nm})$ that are in no Suzuki-subgroup of the form $Sz(2^{nd})$, with $d \mid m$. If we sum up all the $\alpha(d)$ for every $d \mid m$ we get all the involutions that are non-commuting with ρ_0 in $Sz(2^{nm})$. As we have already seen, there are exactly $2^{nm} - 1$ such involutions. So $\sum_{d \mid m} \alpha(d) = 2^{nm} - 1$. If we take $G(m) = 2^{nm} - 1$, $F(d) = \alpha(d)$ and apply Lemma 7, we get the following expression for $\alpha(m)$.

$$\alpha(m) = \sum_{d \mid m} \mu(\frac{m}{d})(2^{nd} - 1)$$

There are $\alpha(m)$ involutions that are split up in orbits of length m . This gives $\frac{\alpha(m)}{m}$ orbits of $m \cdot q^2$ candidates for ρ_1 . Every candidate has to be in exactly one orbit of length m with $m \mid \frac{2e+1}{n}$. Involutions that are in a same orbit are equivalent by isomorphism. So to get the complete number of candidates for ρ_1 , once ρ_2 is fixed in an orbit of length n , we have to count the number of orbits in which the $q^2(q-1)$ involutions of $G \setminus C_G(\rho_0)$ are split up, for a fixed n . The complete number of orbits is obtained by summing up all the $\frac{\alpha(m)}{m}$ for every possible $m \mid \frac{2e+1}{n}$. Therefore, up to isomorphism, the number of choices for ρ_1 is the following.

$$\psi(n, 2e+1) = \sum_{m \mid \frac{2e+1}{n}} \frac{\alpha(m)}{m} = \sum_{m \mid \frac{2e+1}{n}} \frac{\sum_{d \mid m} \mu(\frac{m}{d})(2^{nd} - 1)}{m}$$

□

Combining Lemma 8 and Lemma 9, there are $\sum_{\substack{n \mid 2e+1 \\ n \neq 1}} \lambda(n) \cdot \psi(n, 2e+1)$ non-isomorphic ordered triple of involutions $[\rho_0, \rho_1, \rho_2]$. As in section 5.1, this number has to be divided by 2

and so we get

$$\frac{1}{2} \sum_{\substack{n|2e+1 \\ n \neq 1}} \lambda(n) \cdot \psi(n, 2e+1) \quad (1)$$

triples of involutions $\{\rho_0, \rho_1, \rho_2\}$, up to isomorphism and duality. However, since $2e+1$ is no longer a prime, $\text{Sz}(q)$ has subgroups that are Suzuki groups too. Therefore it might be that the three involutions generate a sub-Suzuki group, not the full $\text{Sz}(q)$. In section 3, it was shown that $\text{Sz}(q')$, with $q' = s$, is a subgroup of $\text{Sz}(q)$, with $q = 2e+1$, if $s|2e+1$ and $s > 2$. Take an example, say $\text{Sz}(2^{15})$, to illustrate this idea.

Example 2. The divisors of 15 are 1, 3, 5 and 15. By Lemma 8, there are 2 orbits of length 3, 6 of length 5 and 2182 of length 15. Lemma 9 gives

$$\begin{aligned} \psi(3, 15) &= \frac{2^3 - 1}{1} + \frac{2^{15} - 1 - (2^3 - 1)}{5} = 7 + \frac{2^{15} - 2^3}{5} = 7 + 6552 = 6559, \\ \psi(5, 15) &= \frac{2^5 - 1}{1} + \frac{2^{15} - 1 - (2^5 - 1)}{3} = 31 + \frac{2^{15} - 2^5}{3} = 31 + 10912 = 10943, \text{ and} \\ \psi(15, 15) &= \frac{2^{15} - 1}{1} = 2^{15} - 1 = 32767. \end{aligned}$$

Formula (1) gives $\frac{1}{2}(\lambda(3)\psi(3, 15) + \lambda(5)\psi(5, 15) + \lambda(15)\psi(15, 15)) = 35788185$. So, up to isomorphism and duality, there are 35788185 triples $\{\rho_0, \rho_1, \rho_2\}$. We know that $\text{Sz}(2^{15})$ has subgroups isomorphic to $\text{Sz}(2^3)$ and $\text{Sz}(2^5)$. Therefore, some triples will not generate $\text{Sz}(2^{15})$, but a subgroup isomorphic to $\text{Sz}(2^3)$ or $\text{Sz}(2^5)$. We have to subtract these triples from all the triples of involutions we have found. Since 3 and 5 are prime numbers, we can use Theorem 4 to compute these triples.

Definition 3. $\text{Inv}(q)$ is the number of orbits of $\text{Aut}(\text{Sz}(q))$ on the set

$$\{\{\rho_0, \rho_1, \rho_2\} \mid \rho_0^2 = \rho_1^2 = \rho_2^2 = (\rho_0\rho_2)^2 = 1_{\text{Sz}(q)}, \langle \rho_0, \rho_1, \rho_2 \rangle = \text{Sz}(q)\}.$$

In our example,

$$\begin{aligned} \text{Inv}(2^{15}) &= \frac{1}{2} \left(\sum_{\substack{n|15 \\ n \neq 1}} \lambda(n) \psi(n, 15) - \frac{2^5 - 2}{5} (2^5 - 1) - \frac{2^3 - 2}{3} (2^3 - 1) \right) \\ &= 35788185 - 93 - 7 \\ &= 35788085. \end{aligned}$$

For $\text{Sz}(2^{15})$, we get 35788085 triples of involutions $\{\rho_0, \rho_1, \rho_2\}$ such that $(\rho_0\rho_2)^2 = 1_{\text{Sz}(2^{15})}$ and $\langle \rho_0, \rho_1, \rho_2 \rangle = \text{Sz}(2^{15})$. Therefore, up to isomorphism and duality, $\text{Sz}(2^{15})$ acts flag-transitively on 35788085 polyhedra.

This example shows clearly that (1) is not our final result. For the moment, the only thing we have is the following lemma.

Lemma 10. *Let $e > 0$ be an integer. Up to isomorphism and duality, there are*

$$\frac{1}{2} \sum_{\substack{n|2e+1 \\ n \neq 1}} \lambda(n) \psi(n, 2e+1)$$

triples of involution $\{\rho_0, \rho_1, \rho_2\}$ in $\mathrm{Sz}(2^{2e+1})$, such that $(\rho_0 \rho_2)^2 = 1_{\mathrm{Sz}(q')}$ and $\langle \rho_0, \rho_1, \rho_2 \rangle = \mathrm{Sz}(q')$, with $q' = 2^{2f+1}$, $2f+1 \mid 2e+1$ and $f \neq 0$.

Remark 1. *The reader may easily check that this formula is the one given in Theorem 4 if $2e+1$ is a prime.*

To obtain the final formula, we subtract from (1) the number of triples of involutions which generate a sub-Suzuki-group of the given Suzuki group. As Lemma 10 states,

$$\frac{1}{2} \sum_{\substack{n|2e+1 \\ n \neq 1}} \lambda(n) \psi(n, 2e+1) = \sum_{d|2e+1} \mathrm{Inv}(2^d).$$

Let us take $F(d) = \mathrm{Inv}(2^d)$ and $G(2e+1) = \frac{1}{2} \sum_{n|2e+1} \lambda(n) \psi(n, 2e+1)$. By Lemma 7, we get

$$\begin{aligned} F(2e+1) &= \sum_{d|2e+1} \mu\left(\frac{2e+1}{d}\right) G(d) \\ \Rightarrow \mathrm{Inv}(2^{2e+1}) &= \sum_{d|2e+1} \mu\left(\frac{2e+1}{d}\right) \frac{1}{2} \sum_{\substack{n|d \\ n \neq 1}} \lambda(n) \psi(n, d) \\ &= \frac{1}{2} \sum_{d|2e+1} \mu\left(\frac{2e+1}{d}\right) \sum_{\substack{n|d \\ n \neq 1}} \lambda(n) \psi(n, d). \end{aligned}$$

Therefore, up to isomorphism and duality, there are

$$\frac{1}{2} \sum_{d|2e+1} \mu\left(\frac{2e+1}{d}\right) \sum_{\substack{n|d \\ n \neq 1}} \lambda(n) \psi(n, d)$$

triples of involutions $\{\rho_0, \rho_1, \rho_2\}$ such that $(\rho_0 \rho_2)^2 = 1_{\mathrm{Sz}(q)}$ and $\langle \rho_0, \rho_1, \rho_2 \rangle = \mathrm{Sz}(q)$. They are all non-degenerate for, otherwise, $\mathrm{Sz}(q) \cong 2 \times D_{2n}$ for some integer n . They all satisfy the intersection property by Lemma 4 and the subgroup structure of $\mathrm{Sz}(q)$. This finishes the proof of Theorem 2.

References

[1] M. Conder, P. Potočnik, and J. Širáň, *Regular hypermaps over projective linear groups*, J. Aust. Math. Soc. **85** (2008), no. 2, 155–175.

- [2] D. Leemans, *The rank 2 geometries of the simple Suzuki groups $Sz(q)$* , Beiträge Algebra Geom. **39** (1998), no. 1, 97–120.
- [3] ———, *Almost simple groups of Suzuki type acting on polytopes*, Proc. Amer. Math. Soc. **134** (2006), no. 12, 3649–3651 (electronic).
- [4] D. Leemans and E. Schulte, *Groups of type $PSL(2, q)$ acting on polytopes*, Adv. Geom **7** (2007), 529–539.
- [5] ———, *Polytopes with groups of type $PGL(2, q)$* , Ars Math. Contemp. **2** (2009), 163–171.
- [6] D. Leemans and L. Vauthier, *An atlas of abstract regular polytopes for small groups*, Aequationes Math. **72** (2006), no. 3, 313–320.
- [7] H. Lüneburg, *Translation planes*, Springer-Verlag, Berlin, 1980.
- [8] P. McMullen and E. Schulte, *Abstract regular polytopes*, Encyclopedia of Mathematics and its Applications, vol. 92, Cambridge University Press, Cambridge, 2002.
- [9] C.-H. Sah, *Groups related to compact Riemann surfaces*, Acta Math. **123** (1969), 13–42.
- [10] M. Suzuki, *On a class of doubly transitive groups*, Ann. of Math. **75** (1962), 105–145.
- [11] J. Tits, *Ovoïdes et groupes de Suzuki*, Arch. Math. **13** (1962), 187–198.